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Abstract

We compute the fat-shattering function and the level fat-shattering function for important
classes of affine functions. We observe that the level fat-shattering function and the fat-
shattering function are identical for these classes. In addition we observe that the notion
that adding the constant term to linear functions increases the dimension by at most 1 is
incorrect for fat-shattering and level fat-shattering.
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Fat-shattering was introduced by Kearns et al. (Kearns & Schapire, 1994) to provide lower
bounds on sample complexity for a learning problem. However it appears that fat shattering is
useful more generally. In particular Alon et. al. (Alon, Ben-David, Cesa-Bianchi, & Haussler,
1997) have proven a generalization of Sauer’s lemma, bounding covering numbers of a function
class in terms of its fat-shattering dimension, leading to a new characterization of Glivenko
Cantelli classes. Shawe-Taylor et al. (Shawe-Taylor, Bartlett, Williamson, & Anthony, 1998)
use the lemma of Alon et al. to provide the first justification for the performance of margin
based classifiers such as Vapnik’s support vector machines (Vapnik, 1998). Consequently it
appears useful to understand the fat-shattering dimension of function classes.

Shawe-Taylor et al. (Shawe-Taylor et al., 1998) show that when Bp is the ball of radius R
in a pre-Hilbert space H ( i.e. there is no completeness requirement) of dimension n and F is
the class of affine functions f(z) = ¢ -z + ¢ with |¢|g <1 and |¢| < R then

. 9R?
fatr(y) < mln(7,n +1)+ 1

In this paper we eliminate the constraint on ¢ and compute the shattering function ezactly. As
a corollary we obtain a simple approximate form for the shattering function which sharpens
this bound essentially to an equality

2 2
max(R—z, 1) < fatr(y) < min(R—2 + §,n +1).
gl 74
The proof relies on that used in Hush and Scovel (Hush & Scovel, 2001) to prove a theorem of
Vapnik on the level fat-shattering dimension of the affine functions. It is modeled on that found
in Bartlett et al. (Bartlett & Shawe-Taylor, 1999) which they applied to the linear case. Their
technique seems to be based on Gurvits (Gurvits, 1997). In the process of proof we obtain
that the fat shattering function and the level fat shattering function are identical for the affine
functions. Comparing with bounds of Bartlett et. al(Bartlett & Shawe-Taylor, 1999) for linear
functions we observe that the notion that going from linear to affine functions should add at
most 1 to the fat-shattering or the level fat-shattering dimension is incorrect.

Definition 1. Let F denote a set of real valued functions on a set X and consider v > 0.
We say that a subset A C X is y-shattered by F if there is a real vector parameterized by A,
{ro € R:a € A}, such that for all binary vectors b parameterized by A, there is a function
f» such that fy(a) > r4 + v when b, = 1 and fy(a) < r, — v otherwise. The fat-shattering
dimension of F at scale 7, fatz(7), is the size of the largest subset A C X which is y-shattered
by F.

The definition of 7 level shattering is the same as above but where r, = r is constant in a.

We now state and prove our main result.

Theorem 1. Let H denote a prehilbert space of dimension n and consider its closed ball
X = Bg, C H of radius Ry. Let F denote the class of functions on X defined by f(z) = ¢-z+c
with |¢|g < Rz and ¢ € R. Denote

1
Y& = =1

k even
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k 1

= k odd .
Ry k+1 ?
Then
fatr(y) =n+1, = <o (1)
RiRy —
Ri1Rs

This function is correct when n = oo but since y > 0 the first line (1) is then void.

Proof. We prove the theorem for Ry = Ry = 1. The general theorem then follows from simple
scaling arguments. We first prove that

1< fatr(y) <n+1. (3)

The inequality 1 < fatz(y) follows from the fact that ¢ can be any real number. We now assume
n is finite for otherwise there is nothing to prove. Let A = {z1,..,xr} where z; € X,i =1,.., k.
From the definition, if A is y-shattered by F then there exists k real values r;,¢ = 1,..,k such
that for every binary vector b = (b1, ..,b) € {—1,1}* there is a (¢, cp) with |¢p| < 1 such that

dp-xi+cp>ri+y, bi=1 (4)

dp-Ti+cp<ri—7, bj=-1. (5)

If we define & = (z,7), & = (@4,73), ¢ = (¢, —1) and ¢, = (¢, —1) then we obtain

bp ity >, bi=1

o Ti+cp < -y, bi=-—1.
Since v > 0 this implies that

Gy di+te >0, b=1 (6)

by Fi+cp <0, bj=—1. (7)

The set of functions &+ ¢-Z+c=¢-z —r +c as (¢, c) vary is a subset of an affine space of
dimension < n+1. Applying the following generalization of a theorem of Steele and Dudley, (see
Theorem 13.9 of (Devroye, Gyorfi, & Lugosi, 1996)) to this affine space of functions satisfying
(6) and (7) finishes the proof of (3). We note that this proof and therefore the corresponding
bound also applies for level fat-shattering.

Lemma 1. Let G be an affine space of real functions on a set X with dim(G) = r. The class
of sets

A={{r:g(z) >0} :9€G}

has VC dimension V4 <.
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Proof. The proof follows that of Theorem 13.9 in (Devroye et al., 1996). It suffices to show
that no set of size k > r points can be shattered by A. Fix arbitrary points z1, ..,z in X and
consider the linear mapping L defined by

g (9(z1),...9(z)) € RE.

Since G is affine and L is linear LG is an affine subspace of R* with dim(LG) < r < k. If this
affine subspace contains the origin, then there is a nonzero vector « orthogonal to LG with at
least one positive value. If we define S = {i : @; < 0} then the set of points {z; : a; < 0} can
never equal a set {z; : g(x;) > 0} for any g because the right hand side of

0=<a,Lg>=Y aiglw:) = cigz:) + Y aig(w:)
i s 5¢

would be strictly negative giving a contradiction. Consequently A cannot shatter x1, .., zg.
Similarly, if the affine subspace LG does not contain the origin a vector a in LG closest to the
origin satisfies

<a,(Lg—a)>=0, Vgeg
which means that

< a,Lg>= Zaig(wi) =|af?* > 0.

7

If we define S = {i : ; < 0} then the set of points {z; : @; < 0} can never equal a set
{z; : g(x;) > 0} for any g because the left hand side of

D aiglz) =) aig(@i) + ) aiglzi) >0
i s 5¢

would be strictly negative giving a contradiction. Consequently A cannot shatter z1, .., xj.

We now proceed to obtain stronger inequalities.

Lemma 2. Suppose that k > 1 points are contained in the ball of radius 1 in H and are vy
fat-shattered by the affine linear functions ¢ - x + ¢ where |¢| <1 and ¢ € R. Then

Y=Yk -

We note that Hush and Scovel (Hush & Scovel, 2001) prove the same inequalities of Lemma,
2 for level fat-shattering.

Proof. Let the binary vector b determine a nontrivial partition of the index set. We define the
weight

1

HO = =
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so that
k
D L) =2
i=1
and
k
> L(b)ibi =0
i=1

If the k points z; are vy shattered then there is a k-vector r such that for each binary vector b
there is a (¢, ¢p) that satisfies (4) and (5). These two equations can be written

bidy - xi +bicy > biri +v 1=1,..,k. (8)

Since L(—b) = L(b), the sum > L(—b);(—b)ir; = —>_ L(b)ib;yr; is odd with respect to
reflection and among b and —b at least one satisfies

ZL(b)zbﬂ‘z Z 0.

Consider this choice of b. Since the weights L(b); are positive, we multiply Equation 8 by L(b);
and sum to obtain

oY LB)ibiws > 2y

where we have utilized the fact that Zle L(b); = 2 and Zle L(b);b; = 0. Since |¢p| < 1 the
Cauchy-Schwartz inequality implies that

1> L(b)ibizi| > 2y.

Since > L(—b);(=b);z; = — > L(b);b;z; this inequality is also true for —b and consequently for
all b representing non trivial partitions.

Hush and Scovel (Hush & Scovel, 2001) show that when k is even

|ZL (b)sz;]?) k4

where F denotes expectation with respect to the uniform distribution over all partitions of the
k indices into two 3 k sized subsets. They also showed that when & is odd,

4k>
UL OO < g

where F denotes expectation with respect to the uniform distribution over all partitions into
a size r subset and a size r + 1 subset where r = %

When £k is even there must exist a partition b such that

4
|ZL Z$Z|2<E|ZL Z.’Ez‘ ) m

W
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but since we know that

1> L(b)ibizi| > 2y

we obtain that

1

<
R —

k even.

Likewise, when k is odd, there must exist a partition such that

4k2

|2 L®ibhail < B 3 LO:®iwil) € o5

giving the inequality

k 1
—1VE+

v < k odd.

oyl
—_

The proof of Lemma, 2 is finished.
¢

We now complete the proof of Theorem 1. Since the inequalities of Lemma 2 and the bound
(3) apply for level fat-shattering it is not hard to see that the following argument constructs
both the fat-shattering function and the level fat-shattering function simultaneously and that
they are identical. Vapnik (Vapnik, 1998) observed that when k£ < n + 1 is finite the regular
unit k-simplex achieves

Y=
so that fatz(yx) > k. Since fatr is monotonic in 7y we obtain that

v <= fatr(y) >k, k<n+1l (9)
The inequalities of Lemma, 2 imply that

v >y = fatrp(y) <k, 1<k. (10)
Combining (9) and (10) we obtain

Yer1 <Y<Y, 1<k<n+1 = fatr(y)=k (11)
and from (9), the monotonicity of fatsr, and the bound (3) we obtain

Y < Yny1 = fatg(y) =n+1

and so obtain Equations (1) and (2) restricted to & > 1. It follows from (11), the monotonicity
of fatr, and the lower bound of (3) that fatz(v) =1 when v > 1. The proof of Theorem 1 is
finished. ¢
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We now proceed to make the function (1,2) of Theorem 1 explicit.

Corollary 1. Let H denote a prehilbert space of dimension n and consider its closed ball
X = Bgr, C H of radius Ry. Let F denote the class of functions on X defined by f(x) = ¢-x+c
with |¢|g < Re and ¢ € R. Then

R2R3 RIR: 5
max ( ;22,1) < fatz(y) < min ( ;22 + Z,n—l— 1).

Proof. Again we prove the corollary for Ry = Ry = 1 and the general theorem then follows
from simple scaling arguments.

Equation (2) becomes

E+1 1 1
t =k, — < k 12
fa]:(’Y) ’ A k+2<7_ k_la even ( )
fatr() =k, L <qy<— 1k odd (13)

a = 7 T4 = 7 1 ?

e VE S T k—1VE LT
To finish the proof of Corollary 1 we establish
1 5

fatr() = = € 03], (14)

To that end, consider the case where fatz(y) = k is even. We prove the sharper statement

1 n+1

fatz(y) — ) € (ma 1], fatz(y) even . (15)

Equation (12) is equivalent to

<k ! <1
USRS
Since fatr(y) < n+ 1 and G 1)2 is monotonically decreasing we obtain the claim (15) for
finite n. It is not hard to see that the result is also correct when n = co. Now consider the
case where fatz(y) =k is odd. Equation (13) is equivalent to

1 1 1

0<k— <1 16
St (16)
Since the function 1 —I— L L has a maximum value 3 7 we conclude
1 5
fa't]:(’Y) € ? + (Oa Z]J fat]:(7) odd (17)
Note that inequality (16) is sharp in the sense that the choice v = % \/klﬁ achieves the upper
bound and since the function 1 + E — kl—g is strictly greater than 1 for k£ > 1 we conclude that
the often stated bound
1
fatr(y) < 2 — +1 (18)
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is Incorrect.

Combining the even (15) and the odd (17) cases implies the claim (14) and together with
(3) completes the proof of Corollary 1.

¢

Below we present a graph of the function fatr along with the upper and lower bounds
implied by Corollary 1.

12 T T T T T T

10

fatr
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